
CASE STUDY

IMPLEMENTING 
INFRASTRUCTURE AS A 
CODE USING TERRAFORM
JANUARY 2020 



INFRASTRUCTURE AS A CODE (IAC)
We decided to use the Terraform tool to code the 
infrastructure components. Terraform is the ideal tool 
for building, changing, and versioning infrastructure 
safely and efficiently. Configuration files describe to 
Terraform the components needed to run a single 
application or your entire datacentre. Terraform 
generates an execution plan with a description of 
what it will do to reach the desired state, and then 
executes it. As the configuration changes, Terraform 
can determine what changed, and create incremental 
execution plans which can then be applied.

The infrastructure where Terraform can be used includes 
low-level components such as compute instances, 
storage, and networking; and high-level components 
such as DNS entries, SaaS features, etc. Terraform uses 
multiple provider plugins to create, modify, and destroy 
resources on infrastructure providers like AWS, GCP, 
Microsoft Azure, OpenStack as well as PaaS or SaaS 
services. This feature provides code portability across 
multiple cloud providers and helps to provision 
standardised infrastructure on any cloud. 

TCL APPROACH

CUSTOMER REQUIREMENTS

•	 Cloud vendor independence and portability 
when needed, with the least effort

•	 Stable, easily customised deployment

•	 Secure infrastructure and data 

•	 Code build and release management tasks 
automated

•	 All infrastructure deployment tasks automated 
to minimise the impact of staff turnover

Our customer is a non-banking, 
asset finance company registered 
with the Reserve Bank of India. 
Their key businesses include 
vehicle loans and leasing, housing 
loans and insurance. 

The IT services catering to these businesses were 
primarily hosted on premises. They deployed their 
applications from Amazon Web Services (AWS) due 
to the increased operational costs of managing a data 
centre, the high-lead time for augmenting IT capacity, 
the rate of staff turnover affecting overall run and 
maintain functions, and the cost of securing the data. 

The customer had no prior experience in using 
automation tools, so TCL expertise was deployed in 
AWS, with an automation approach for provisioning, 
DevOps and management.

IMPLEMENTING INFRASTRUCTURE AS A CODE 
USING TERRAFORM



DEVELOPMENT AUTOMATION FOR CODE BUILD AND RELEASE 
MANAGEMENT
We used AWS CodeCommit, CodeBuild, CodeDeploy 
and CodePipeline as the DevOps services. Once the 
developer commits the code in GIT (CodeCommit), 
the CI/CD automation will help the customer to 
perform a hands-free cascading of the application 

code across multiple environments (development, QA, 
pre-production and production). The CICD pipeline 
across the environments is tracked and an AWS SNS 
feature sends a notification to the DevOps team.

CloudWatch 
Logs

AWS 
S3

Public subnet Public subnet Public subnet

Endpoint 
Interface

Back-End Auto 
Scaling Group

CloudWatch 
Metrics

AWS 
Code 

Pipeline

Route 
53

Bastion Host

EC2 - APP 
Server

EC2 - APP 
Server

EC2 - APP 
Server

EC2 - APP 
Server

EC2 - APP 
Server

EC2 - 
APP 

Server

CloudWatch 
Alarm

AWS 
Code 
Commit

VPN 
Connection

Front-End Auto 
Scaling Group

Amazon 
Customer 
Image AMI

Amazon 
Customer 
Image AMI

SNS

AWS 
Code 
Build

Corporate 
Office

NAT Gateway

RDS

AWS 
Glacier

AWS 
Code 

Deploy

Internet Gateway

Bastion Host

Internal 
Load 
Balancer

MySQL 
Master Server
Availability 

Zone A

MySQL 
Multi-AZ

MySQL Read 
Replica

Availability 
Zone B

Availability 
Zone C

Customer 
Gateway

Application 
Load Balancer

RDSRDS



DEPLOYMENT FEATURES

VPC
We created a single production Virtual Private Cloud 
(VPC). It is a virtual network where you create and 
manage your AWS resources in a more secure and 
scalable manner. We automated VPC creation using 
Terraform, which also created end-to-end setup.

Subnet
We separated the web, application and database 
subnets into three subnets with smaller CIDR values, 
and added a fourth for load balancers. The design 
of the subnets was dependent on the application 
requirements. The code used for deployment is 
flexible, to create additional or lesser numbers 
with varied IP ranges. We have created four subnets 
under three availability zones for a 1+2 redundant 
zones implementation. While this was a customer 
requirement for three availability zones, having at 
least two availability zones is recommended for 
any three-tier application architecture.

Route and internet gateway
We deployed an internet gateway (IGW) as TCL-TT-
PROD VPC to be used for downloading custom 
patches and connecting external email servers. 
The IGW was associated with all public subnets. 
Route tables were also configured to associate the 
inbound and outbound traffic to specific subnets.

NAT and NACL
We configured a NAT gateway to a NAT private IP 
and on to a public IP. This helped to secure the 
servers in the private subnets and get the outbound 
internet access to patch the OS, update the antivirus 
and send email to the external mail servers.

Using NACL (Network Access Control list) as a firewall 
for controlling traffic in and out of one or more 
subnets, we blocked and restricted traffic flow across 
the three subnets. 

EC2 – web and app server under AWS 
Auto Scaling
We provisioned EC2 instances for web and app 
servers. The Terraform code was scripted to deploy 
‘c5. Large’ type instances under auto scaling groups 
for the web and app servers. We chose three 
availability zones in US-EAST for deploying EC2 
instances. Each zone has one instance of web and app 
deployed at any given time. Based on the load 

characteristics monitored by CloudWatch, the auto 
scaling group was configured to create additional 
EC2 instances using pre-defined custom templates. 

Load Balancer
We configured Application Load Balancer instances 
separately for web server and app servers. Each load 
balancer is configured to the respective auto scaling 
targets with security groups. 

S3 and Glacier
We used S3 for the static file store requirements of 
our customer. The web, app and database servers 
push the regular BI data, backups, and csv file for 
analytics into the S3 buckets. We have scripted the 
life cycle management policy configuration to move 
the infrequently accessed data to AWS Glacier. 

CloudWatch and SNS
We enabled AWS CloudWatch monitoring to measure 
CPU, RAM, and disk utilisation, and to perform custom 
application monitoring. If the metrics reach the 
configured threshold, an alert is triggered from the 
CloudWatch alarm and a notification is sent to the 
customer’s email. 

CodePipeline
We automated the customer’s developer activities, 
like source code build and release management. 
Once the developer commits their source code into 
AWS CodeCommit via private endpoint using a VPN 
connection, CodePipeline will trigger the CI/CD 
process. It gets the code from AWS CodeCommit 
and then starts AWS Code Build, using buildspec.yml 
and buildspec_test.yml. 

Once the build and respective tools output are 
successful, they are moved to AWS Code Deploy. 
Here, Code Deploy checks the appspec.yml file, which 
provides the information on script folders for 
deployment configuration and strategy, and the 
application is then deployed in the target servers. 

VPN and Customer Gateway
In compliance with the AWS Well Architected 
Framework, we have enabled and configured the VPN 
and Customer Gateway to use AWS services from the 
corporate office.

To learn more about Tata Communications, email: business@tatacommunications.com or 
visit: www.tatacommunications.com

©2020 Tata Communications. All rights reserved. TATA COMMUNICATIONS and TATA are trademarks of Tata Sons Private Limited. 


